
Phylanx Frontend and Optimization
Opportunities

Theano1: Overview

● High-level domain-specific language tailored to numeric computation.

● Symbolic defining of mathematical expressions.

● Python interface.

● Compile symbolic expressions to C for CPU and/or GPU.

● Represent symbolic mathematical expressions as bipartite DAGs

● Graph node types:

○ Variable: representing data:
■ TensorType
■ GpuArrayType
■ Sparse

○ Apply: representing the application of mathematical operations.

Theano: Overview

● Support for looping and branching in expressions.

● Automatic speed and stability optimizations.

○ Canonicalize

○ Stabilize

○ Specialize

○ Multiple backends

○ ...

TensorFlow2: Overview

● Symbolic math library for dataflow programming.

○ Mostly used for machine learning applications focusing on deep learning.

● Dataflow graph

○ Nodes: Operations

○ Edges: Tensors (multidimensional arrays.)

● Multi-stage programming

○ Construction phase

○ Execution phase

TensorFlow: Overview

Spartan3: Overview

● Distributed array framework written in Python + Cython.

● Built-ins that directly compute on arrays.

● Lazy-evaluation execution policy.

● Automatic partitioning of n-dimensional arrays:

○ Access pattern of array elements.

○ Access mode of arrays.

○ Arrays’ shape and size.

○ Communication cost.

Spartan: Theory

● Access patterns of all operations are categorized by 5 high-level operators:
○ Map: AOut = map(fmap, A1, A2, ...)

■ Cost: size of all input arrays whose tiling differ from A1.

○ Filter: AOut = filter(fpredicate, AIn)
■ Cost: zero

○ Fold: AOut = fold(faccumulate, AIn, axis)
■ Cost: zero along axis, otherwise, size of AIn.

○ Scan: AOut = scan(faccumulate, AIn, axis)
■ Cost: zero along axis, otherwise, size of AIn.

○ Join and Update: AOut = join_update(fjoin, faccumulate, A1, A2, ..., axis1, axis2, …, output_shape)

■ Cost: zero for each array AI zero along axisI, otherwise, size of Ai for faccumulate

 + size of Aout for fjoin

Spartan: Design

Frontend
● Turn the user program into an expression graph of

high-level operators.
● Run a greedy search algorithm to find a good tiling
● Pass the tiled expression graph to the backend for

execution.

Backend
● Create distributed arrays according to the

assigned tilings.
● Evaluate each operator by scheduling parallel

tasks among a collection of workers.

Spartan: Example

Spartan: Limitations

● Only aims at minimizing network communication.

● The cost profile of join_update is not always known:

○ Assumes the upper bound of cost for the join function, i.e., size of the output array.

○ Requires hints from user.

● Tiling algorithm is not refined.

● Estimate the size of the sparse matrices.

● Does not support looping and branching in expressions.

● Distributed.

● Symbolic math interface.

● Decoupled optimization and execution engines.

● Multifold optimizations
○ Data decomposition.
○ Graph optimization.
○ Architectural.

Phylanx: Objectives

Phylanx: Frontend

● Sympy4

○ A Computer Algebra System (CAS)

○ Written in Python + Cython.

○ Provides symbolic arithmetic to many branches of mathematics.

○ Automatic evaluation to the canonical form.

Quick Demo

● Domain decomposition, e.g.,
○ Tile shapes: rectangles, trapezoids, diamonds, …
○ Split tiling.
○ Overlapped tiling

● Graph optimizations, e.g.,
○ Fuse operations on same memory locations.
○ Common subexpression elimination.
○ Hoisting loop invariants.

● Architectural (Selection and tuning), e.g.,
○ Heuristics
○ Program characteristics

● Misc.
○ Caching
○ Partial execution

Phylanx: Optimizations

Phylanx: Architecture

Thank you!

1. https://github.com/Theano/Theano
2. https://github.com/tensorflow/tensorflow
3. https://github.com/spartan-array/spartan

References

https://github.com/Theano/Theano
https://github.com/tensorflow/tensorflow
https://github.com/spartan-array/spartan

