LSl | cceger;':o[r)utation & Technology { STEI IAR GROUP

Phylanx Frontend and Optimization
Opportunities

Lsu ‘ cé:;errr;o[r)utation & Technology 0 STE I IAR GROU P

Theano': Overview

e High-level domain-specific language tailored to numeric computation.
e Symbolic defining of mathematical expressions.

e Python interface.

e Compile symbolic expressions to C for CPU and/or GPU.

e Represent symbolic mathematical expressions as bipartite DAGs

e Graph node types:

o Variable: representing data:
m TensorType
m GpuArrayType
m Sparse

o Apply: representing the application of mathematical operations.

Lsu ‘ cé:;errr;o[r)utation & Technology 0 STE I IAR GROU P

Theano: Overview

e Support for looping and branching in expressions.

e Automatic speed and stability optimizations.
o Canonicalize
o Stabilize
o Specialize

o Multiple backends

Lsu cé:;errr;o[r)utation & Technology 0 STE I IAR GROU P

TensorFlow?: Overview

e Symbolic math library for dataflow programming.
o Mostly used for machine learning applications focusing on deep learning.
e Dataflow graph

o Nodes: Operations

o Edges: Tensors (multidimensional arrays.)

e Multi-stage programming
o Construction phase

o Execution phase

Lsu ‘ c(S.:;errr;o[;uta\tion & Technology 0 STEI IAR GROU P

TensorFlow: Overview

1
" b i
single process i [E (" Thaster
it oy P : ' rocess process
' client '——= master ' P T
gy = el S seslon L. d !
run i exacute
I subgraph
exstube :
subgraph ;
i worker worker worker
JAEEETe AT ae T, | process 1 process 2 process 3
. . 1
| : ; N (W e
_ EnEs == = !) D |
9 " |
]

Center for

Computation & Technology

LS

Spartan: Overview

e Distributed array framework written in Python + Cython.
e Built-ins that directly compute on arrays.
e |azy-evaluation execution policy.
e Automatic partitioning of n-dimensional arrays:
o Access pattern of array elements.
o Access mode of arrays.

o Arrays’ shape and size.

o Communication cost.

@ STE||AR GROUP

Lsu cé:;errr;o[r)utation & Technology 0 STE I IAR GROU P

Spartan: Theory

e Access patterns of all operations are categorized by 5 high-level operators:
o Map:A,, = map(fmap, AA,)
m Cost: size of all input arrays whose tiling differ from A..

o Filter: A, =filter(f o A
m Cost: zero

o FoId:Ao = fold(f , A, axis)
ut accumulate In
m Cost: zero along axis, otherwise, size of A .

o Scan:A, =scan(f A, 0Xis)

m Cost: zero along axis, otherwise, size of Aln.

© Join and Update: A = join_update(lj. A, A, .. axis, axis,, ..., output_shape)

oin’ " accumulate’

m Cost: zero for each array AI zero along axis/, otherwise, size of A for f
i accumulate

+ size of AOut for f.

Jjoin

Center for

Computation & Technology

LS

@ STE||AR GROUP

Spartan: Design

Frontend
e Turn the user program into an expression graph of
high-level operators.
Run a greedy search algorithm to find a good tiling

Pass the tiled expression graph to the backend for
execution.

Backend
e Create distributed arrays according to the
assigned tilings.
e FEvaluate each operator by scheduling parallel
tasks among a collection of workers.

array-language
frontend

client capture array expressions
machine

transform to operators
[operator based | tiling
expression graph | optimization

distributed execution |
backend

Worker 1

| Hieed distributod

Tile2 Srave

T

Lsu c(S.:;errr;o[;uta\tion & Technology 0 STE I IAR GROU P

Spartan: Example

C=A+B
E=C+D

Lsu cé:;errr;o[r)utation & Technology 0 STE I IAR GROU P

Spartan: Limitations

e Only aims at minimizing network communication.

e The cost profile of join_update is not always known:

o Assumes the upper bound of cost for the join function, i.e., size of the output array.

o Requires hints from user.

e Tiling algorithm is not refined.
e Estimate the size of the sparse matrices.

e Does not support looping and branching in expressions.

Lsu ‘ cé:;errr;o[r)utation & Technology 0 STE I IAR GROU P

Phylanx: Objectives

e Distributed.
e Symbolic math interface.
e Decoupled optimization and execution engines.

e Multifold optimizations
o Data decomposition.
o Graph optimization.
o Architectural.

LS

Computation & Technology
Phylanx: Frontend
4
® Sympy
o A Computer Algebra System (CAS)
o Written in Python + Cython.
o Provides symbolic arithmetic to many branches of mathematics.
o Automatic evaluation to the canonical form.

Center for

Quick Demo

@ STE||AR GROUP

Lsu cé:;errr;o[r)utation & Technology OSTE"AR GROUP
Phylanx: Optimizations
e Domain decomposition, e.g., T T T
o Tile shapes: rectangles, trapezoids, diamonds, ...
o Split tiling.

o Overlapped tiling
e Graph optimizations, e.g.,
o Fuse operations on same memory locations.
o Common subexpression elimination.
o Hoisting loop invariants.
e Architectural (Selection and tuning), e.g.,
o Heuristics
o Program characteristics
e Misc.
o Caching

o Partial execution
e

Lsu cé:;errr;;utation & Technology 0 STE I IAR GROU P

Phylanx: Architecture

E Python Interface
5

Sympy + Native Python

Phylanx AST
Optimaztion

+ Execution Engine

Phylanx AST

Exection Graph Auto Tuner

HPX / APEX

Lsu ‘ cé:;errr;o[r)utation & Technology 0 STE I IAR GROU P

Thank youl!

Lsu ‘ CCe:;er;':o[;utation & Technology c STE I IAR GROU P

References

1. https://qgithub.com/Theano/Theano
2. https://qgithub.com/tensorflow/tensorflow
3. https://qgithub.com/spartan-array/spartan

https://github.com/Theano/Theano
https://github.com/tensorflow/tensorflow
https://github.com/spartan-array/spartan

